skip to main content


Search for: All records

Creators/Authors contains: "Murphy, Lisa N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. White, M. (Ed.)
    Free, publicly-accessible full text available October 19, 2024
  2. Abstract This paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20 th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations. 
    more » « less
  3. Abstract

    The North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.

     
    more » « less
  4. Abstract

    Atlantic multidecadal variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic Ocean basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea surface temperature (SST) anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere–ocean variability remain influential to the AMV on multidecadal time scales in our modern, anthropogenically forced climate. Here we provide evidence from multiple large ensembles of climate models, paleoreconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one-third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains one-half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three-quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.

     
    more » « less
  5. Abstract

    Previous studies that used Earth system models of intermediate complexity showed that stronger background winds drove a more vigorous and stable Atlantic Meridional Overturning Circulation (AMOC), while those with weaker winds had a more sluggish and unstable AMOC. In other studies, ensembles under vertical mixing uncertainty showed the opposite effect, where the simulations with a stronger AMOC were more unstable. To tackle this conundrum, we produce a model ensemble featuring uncertainties related to wind forcing and vertical mixing to understand the role of feedbacks on the AMOC stability. We show that the stability of the AMOC is not influenced by vertical mixing and the AMOC strength, and rather, it is determined by the strength of the Northern Hemisphere winds. Paleoproxies indicate an AMOC shutdown during the last Heinrich Stadial. Our comparisons to sea surface temperature proxies show a better fit with the simulations under a stable AMOC, which corresponds to a forced off‐state. The sign of the AMOC‐driven freshwater transport in the South Atlantic, which is regarded as an index for its stability, is shown not to be an absolute measure, although its evolution agrees with the salt advection feedback.

     
    more » « less
  6. Abstract

    The modern history of North Atlantic sea surface temperature shows variability coinciding with changes in air temperature and rainfall over the Northern Hemisphere. There is a debate about this variability and, in particular, whether it is internal to the ocean‐atmosphere system or is forced by external factors (natural and anthropogenic). Here we present a temperature record, obtained using the Sr/Ca ratio measured in a skeleton of a sclerosponge, that shows agreement with the instrumental record over the past 150 years as well as multidecadal temperature variability over the last 600 years. Comparison with climate simulations of the last millennium shows that large cooling events recorded, in the sclerosponge, are consistent with natural (primarily volcanic activity) and anthropogenic forcings. There are, however, multidecadal periods not connected to current estimates of external forcing over the last millennium allowing for alternative explanations, such as internally driven changes in ocean and atmospheric circulation.

     
    more » « less